NORMAL MODAL LOGICS IN WHICH

THE HEYTING PROPOSITIONAL CALCULUS CAN BE EMBEDDED

Kosta Došen

Matematički Institut
Knez Mihailova 35
Belgrade, Yugoslavia

INTRODUCTION

Let $t(A)$ be the result of prefixing the necessity operator \Box to every proper subformula, save conjunctions and disjunctions, of the formula A of the language of the Heyting propositional calculus \mathcal{H}. It is well-known that \mathcal{H} can be embedded by t in S_4, i.e. A is provable in \mathcal{H} iff $t(A)$ is provable in S_4. Esakia (1979), and also Blok (1976), have shown that S_4Grz (defined below) is the maximal normal extension of S_4 in which \mathcal{H} can be embedded by t (as a matter of fact, we find in Esakia (1979) not t, but the translation which prefixes \Box to every subformula; this translation is equivalent to t as far as S_4 and its normal extensions are concerned).

It is not difficult to find the minimal normal modal propositional logic $K4N$, weaker than S_4 (this logic, considered by Lemmon and Scott (1977, pp. 68-71), will be defined below), in which \mathcal{H} can be embedded by t (cf. Došen 1981 and 1986). We may then ask whether S_4Grz is also the only maximal normal extension of $K4N$ in which we can embed \mathcal{H} by t, i.e. whether it is true that \mathcal{H} can be embedded by t in a normal modal propositional logic S iff S is between $K4N$ and S_4Grz. We shall show in this paper that methods of Esakia (1979) can be adapted to answer this question affirmatively.

This result depends essentially upon considering only normal modal propositional logics S. For nonnormal modal logics we may have minimal and maximal logics with respect to the embedding by t whose sets of theorems differ from those of $K4N$ and S_4Grz respectively (the nonmaximality of S_4Grz for nonnormal modal logics was considered by Chagrov (1985)). Our result also depends upon using the translation t and not some analogous translation, which as far as S_4 and its normal extensions are concerned is equivalent to t. We shall consider in this paper the difficulties which we encounter with these other translations.

The embeddings of \mathcal{H} in $K4N$ and related logics, which we shall consider in the next two sections, suggest that we may show \mathcal{H} complete with respect to Kripke-style models in which the "accessibility" relation is not a quasi-ordering, but satisfies weaker conditions. After a section on these Kripke-style models, in the final section we shall make some brief comments on modal embeddings of Heyting first-order predicate logic and Heyting arithmetic, and on modal embeddings of classical logic.
MODAL LOGICS

Our basic nonmodal propositional language L will have countably many propositional variables, the binary connectives +, ∧ and ∨, and the unary
connective □. The modal propositional language L□ will have in addition to
what we have in L the unary connective □. For formulae of L or L□ we use the
schematic letters A, B, C, ..., A₁, ..., As As usual, A ↔ B is defined as (A + B) ∧ (B + A).

The Heyting propositional calculus in L□ will be denoted by H. The
system K in L□ is the classical propositional calculus extended with
□(A + B) + □A + □B) and closed under the rules: modus ponens, substitution for
propositional variables and necessitation (i.e. from A infer □A). We write
S' ⊆ S" when the theorems of the system S' are included among the theorems
of the system S". A system S in L□ is normal iff K ⊆ S and S is closed under
the rules of K.

The normal system K4N will be obtained by extending K with □A + □□A,
□□(A + B) and □□(□A ∧ □B) + □□(□A ∨ □B). It is easy to show that S4, i.e. K plus
□□A + □□□A, properly extends K4N. The normal system S4Grz is K extended
with □□(A + □A) + □A. It is known that S4Grz properly extends S4 (see van
Benthem and Bloos 1978 and Boolos 1979, Chapter 13).

The translation t is a one-one mapping from L into L□ such that t(A) is
the result of prefixing □ to every proper subformula of A save conjunctions
and disjunctions. More precisely, t is defined as follows, via the transla-
tion s which prefixes □ to every subformula save conjunctions and disjunc-
tions:

\[
\begin{align*}
 s(A) &= □A, \text{ where } A \text{ is a propositional variable,} \\
 s(A + B) &= □(s(A) + s(B)), \\
 s(\alpha A) &= s(A) □s(B), \text{ where } \alpha \text{ is } ∧ \text{ or } ∨, \\
 s(□A) &= □s(A);
\end{align*}
\]

\[
\begin{align*}
 t(A) &= A, \text{ where } A \text{ is a propositional variable,} \\
 t(A + B) &= s(A) + s(B), \text{ where } B \text{ is } +, ∧ \text{ or } ∨, \\
 t(□A) &= □s(A).
\end{align*}
\]

We write H ⊢ S iff for every A in L we have that A is a theorem of H iff
t(A) is a theorem of S, i.e. H can be embedded by t in S. The following
lemma asserts that K4N is the minimal normal system in which H can be embed-
ded by t:

Lemma 1. (1) H ⊢ K4N.

(2) If S is normal and H ⊢ S, then K4N ⊆ S.

Proof. (1) Let A be a theorem of H, and let s'(A) be obtained from A
by prefixing □ to every subformula of A (including conjunctions and disjunc-
tions). Then by induction on the length of proof of A in H we can show that
s'(A) is a theorem of K4N. To obtain that t(A) is a theorem of K4N we remove
superfluous necessity operators from s'(A) by using the fact that
□(□B ∧ □C) ↔ (B ∧ □C) and □(□B ∨ □C) ↔ (B ∨ □C) are theorems of K4N, and that K4N is
closed under replacement of equivalents and under the rules:

\[
\begin{align*}
 □(□B + □C) & \quad □B + □C, \\
 □B + □C & \quad □B.
\end{align*}
\]

To prove H ⊢ K4N it remains to observe that K4N ⊆ S4, and appeal to the well-
known fact that H ⊢ S4.
(2) The minimality of K4N follows from the fact that $\Box A \rightarrow (\Box (\Box C \rightarrow C) + \Box A)$, $\Box (\Box (\Box C \rightarrow C) + (\Box A \rightarrow B)) + (\Box A \rightarrow B)$, where A, B and C are propositional variables, are t-translations of theorems of H. q.e.d.

This lemma is tied up to the particular translation t and the particular primitive vocabulary we have assumed for L and $L\Box$. It is well-known that for embedding H in $S4$ we may also use the translation t' which prefixes \Box to every proper subformula (including conjunctions and disjunctions). Indeed, in K4N and its normal extensions for every A in L we have that:

$t(A)$ is provable iff $t'(A)$ is provable
iff $s(A)$ is provable
iff $s'(A)$ is provable,

where s and s' are the two translations defined before Lemma 1 and in the proof of Lemma 1. To sum up, we have the following translations:

<table>
<thead>
<tr>
<th>prefixes \Box to every</th>
<th>proper subformula save conjunctions and disjunctions</th>
<th>proper subformula</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t'</td>
<td>s, s'</td>
</tr>
<tr>
<td>t'</td>
<td>s, s'</td>
<td>s', s'</td>
</tr>
</tbody>
</table>

These various translations, which are not essentially different as far as K4N and its normal extensions are concerned, induce different minimal normal modal systems to replace K4N. Namely, the minimal normal modal system S such that:

$H \vdash t' S$ is $Kt' = K + \Box A \rightarrow \Box A, \Box \Box (A \rightarrow A)$;

$H \vdash s' S$ is $Ks' = K + \Box (\Box A \rightarrow \Box A), \Box \Box (A \rightarrow A), \Box (\Box (A \rightarrow B) + (A \rightarrow B))$;

$H \vdash s' S$ is $Ks' = K + \Box (\Box A \rightarrow \Box A), \Box \Box (A \rightarrow A)$.

To demonstrate this (cf. Došen 1981 and 1986) we proceed analogously to what we had for Lemma 1, save for the following. To show that if A is a theorem of H, then $s'(A)$ is a theorem of Ks', we use the fact that Ks' is closed under the rule:

$\Box (A \rightarrow A) \rightarrow \Box B$

$\Box B[A_1/A_2]$ where $B[A_1/A_2]$ is obtained from B by replacing zero or more occurrences of A_1 by A_2; we also use the fact that if A is a theorem of H, then in Ks' we can prove $\Box s'(A) + t'(A)$, i.e. $\Box s'(A) + s'(A)$ (remember that H has the disjunction property, i.e. if BVC is provable in H, then either B or C is provable in H). To show that if A is a theorem of H, then $s(A)$ is a theorem of Ks, we use the fact that the provability of B in K4N implies the provability of $\Box B$ in Ks, and also the facts that BVC is provable in H if B and C are provable in H, and that BVC is provable in H if B or C is provable in H. Finally, to show that if A is a theorem of H, then $t'(A)$ is a theorem of Kt', we use the fact that the provability of A in H implies the provability of $s'(A)$ in Kt'; this implies the provability of $t'(A)$ in Kt' (remember again that H has the disjunction property).

With a different primitive vocabulary in L and $L\Box$ we may also end up with a minimal normal system different from K4N. For example, if we have the constant proposition \top as primitive, instead of $\Box (where \top \rightarrow A$ is defined as $A \rightarrow A$), and if \top behaves in the translations t, t', s and s' as a propositional variable, then the minimal normal system replacing K4N in Lemma 1 will be
Fig. 1. Modal systems. (Arrows indicate proper inclusion.)

\[K_4N^\circ = K + □A+□A, □(□AV□B)+□(□AV□B). \] This difference arises because with 1 primitive we have:

\[
t(\neg A) = t(A+1) = s(A) + □1,
\]

whereas with \(\neg \) primitive and 1 defined as \(\neg(A+1) \) we have that \(t(\neg A) \) is equivalent to \(s(A) + 1 \). With 1 primitive, and the translations \(t' \), \(s \) and \(s' \), the minimal normal systems will be the respective systems in the list above with \(\neg □(A+1) \) and \(□\neg □(A+1) \) omitted. Let us denote these systems by \(Kt' \circ \), \(Ks \) and \(Ks' \circ \). Then the modal systems which we have considered make the chart of Fig. 1.

MODAL ALGEBRAS

Let \(HA=⟨H,∩,∪,→,1,0⟩ \) be a Heyting algebra (called pseudo-Boolean algebra by Rasiowa and Sikorski (1963)), and let \(TB=⟨B,∩,∪,→,1,0,1⟩ \) be a topological Boolean algebra (where \(' \) is Boolean complement and \(I \) an interior operation). If \(HA(B)=⟨a∈B: Ia= a⟩ \), and for \(a \) and \(b \) in \(HA(B) \) we define \(a→b \) as \(I(¬a∪b) \), then \(HA(TB)=⟨HA(B),∩,∪,→,1,0⟩ \) is a Heyting algebra (which Esakia (1979) calls the stencil of \(TB \)).

By using a well-known construction of McKinsey and Tarski (inspired by Stone; see Rasiowa and Sikorski 1963, pp. 128–130), we can embed a given Heyting algebra \(HA=⟨H,∩,∪,→,1,0⟩ \) in a topological Boolean algebra \(TB(HA)=⟨TB(H),∩,∪,→,1,0,1⟩ \) generated by \(H \), where for every \(a∈TB(H) \) there are \(b_1, \ldots, b_n, c_1, \ldots, c_n \) such that \(a=(-b_1∪c_1)n\ldots n(-b_n∪c_n) \) and
$Ia= \langle b_1 \to c_1 \rangle \cdots \langle n(b_n \to c_n) \rangle$. It can then be shown that HA(TB(HA)) is isomorphic with HA.

For every TB we can prove the following lemma:

Lemma 2. TB(HA(TB)) is isomorphic to a subalgebra of TB.

Proof. For $TB=\langle B, \land, \lor, \neg, 1, 0, I \rangle$ let $B^*=\{ a \in B : \exists b _b, \ldots, b_n, c_1, \ldots, c_n \in B \ | (b_1=Ib_1) \land \cdots \land (c_n=Ic_n) \land a=\neg(b_1 \lor c_1) \cdots \lor \neg(b_n \lor c_n) \}$. It is easy to show that $TB^*=\langle B^*, \land, \lor, \neg, 1, 0, I \rangle$ is a subalgebra of TB. It remains to check that TB* is isomorphic with TB(HA(TB)) (a detailed proof may be found in Maksimova and Rybakov 1974, Lemmata 3.3 and 3.4). \(q.e.d.\)

So, we may always consider that TB(HA(TB)) is a subalgebra of TB, but not necessarily isomorphic with TB. If TB(HA(TB)) is isomorphic with TB, following Esakia (1979), we call TB a stenciled topological Boolean algebra.

We write TB=A iff for every valuation v from L\(\hat{\cdot} \) into B we have v(A)=1 in TB, and we write TB=S iff for every theorem A of the system S we have TB=A. The essential result of Esakia which we need is the following:

Lemma 3. (Esakia 1979, Corollary 4.10) If A is not a theorem of S4Grz, then there is a finite stenciled TB such that it is not the case that TB=A.

We shall call QTB=\langle B, \land, \lor, \neg, 1, 0, I \rangle a quasi-topological Boolean algebra iff \langle B, \land, \lor, \neg, 1, 0 \rangle is a Boolean algebra and for every a, b \in B we have:

\[I(a \land b) = Ia \land Ib, \quad I1 = 1, \quad Ia = Ia, \quad IO = 0, \quad I(a \lor Ib) = Ia \lor Ib. \]

Every topological Boolean algebra is quasi-topological (it satisfies moreover Ia \langle a \rangle, but not the other way round. It is easy to verify that A is a theorem of K4N iff for every QTB we have QTB=A; namely, the Lindenbaum algebra of K4N is a freely generated QTB.

If HA(QTB) is defined analogously to HA(TB), we can check that for every QTB the algebra HA(QTB) is a Heyting algebra (this is contained in the fact that H can be embedded in K4N by s'). For every QTB we can also prove the following analogue of Lemma 2:

Lemma 4. TB(HA(QTB)) is isomorphic to a subalgebra of QTB.

The proof of this lemma proceeds quite analogously to the proof of Lemma 2. Note that without IO \(= \) 0 this proof might be blocked, since we might be unable to show that 0 \in B*. And without I(Ia \lor Ib) = Ia \lor Ib, we might be unable to show that B* is closed under \(\lor \) (and under \(\neg \)).

Note also that in QTB* (obtained as TB* in the proof of Lemma 2) we have for every a \in B* that Ia \langle a \rangle, though in QTB this is not the case for every a. Indeed, QTB*, which is isomorphic with TB(HA(QTB)), is a topological Boolean algebra. Lemma 4 yields as a corollary that for every quasi-topological Boolean algebra QTB there is a topological Boolean algebra TB which is a subalgebra of QTB and such that HA(QTB) is isomorphic with HA(TB). (Compare this with the fact, mentioned by Lemmon and Scott (1977, pp. 70-71), that K4N can be axiomatized by extending K with \(\Box A \lor \Box A \) and \(\Box B \rightarrow B \), where every propositional variable of B is within the scope of a \(\Box \).)

Let S be a normal system such that K4N \(\subseteq \) S, and let VS=\{ QTB: QTB \(\models \) S \}. The algebras in VS make a variety (because for every theorem A of S we can ask from our QTB's that they satisfy a=1, where a is obtained from A by translating logical with algebraic symbols). Let now HA(VS)=\{ HA(QTB): QTB \(\in \) VS \}. We can prove the following (cf. Blok and Dwinger 1975, Theorem 4.1):

Lemma 5. HA(VS) is closed under homomorphic images and subalgebras.
Proof. For closure under homomorphic images, suppose \(\text{QTBEVS} \) and
\(f: \text{HA}(\text{QTBE}) \rightarrow \text{HA} \) is an onto homomorphism. By Lemma 4, we have that \(\text{TB}(\text{HA}(\text{QTBE})) \)

is a subalgebra of \(\text{QTBE} \), and since \(\text{VS} \) is a variety, \(\text{TB}(\text{HA}(\text{QTBE})) \subseteq \text{VS} \). The homomorphism \(f \) can naturally be extended to a homomorphism \(g \) from \(\text{TB}(\text{HA}(\text{QTBE})) \) onto \(\text{TB}(\text{HA}) \) (for \(a = (b_1u_c_1) \ldots n (b_nu_c_n) \), take \(g(a) = (-f(b_1)uf(c_1)) \ldots n (-f(b_n)uf(c_n)) \)). Since \(\text{VS} \) is a variety, \(\text{TB}(\text{HA}) \subseteq \text{VS} \). But \(\text{HA} \) is isomorphic with \(\text{HA}(\text{TB}(\text{HA})) \). So, \(\text{HA} \subseteq \text{HA}(\text{VS}) \).

For closure under subalgebras, suppose \(\text{QTBEVS} \) and \(\text{HA} \) is a subalgebra of \(\text{HA}(\text{QTBE}) \). Then \(\text{TB}(\text{HA}) \) is a subalgebra of \(\text{TB}(\text{HA}(\text{QTBE})) \). Since \(\text{TB}(\text{HA}(\text{QTBE})) \) is a subalgebra of \(\text{QTBE} \), we have that \(\text{TB}(\text{HA}) \) is a subalgebra of \(\text{QTBE} \), and since \(\text{VS} \) is a variety, \(\text{TB}(\text{HA}) \subseteq \text{VS} \). But \(\text{HA} \) is isomorphic with \(\text{HA}(\text{TB}(\text{HA})) \), and hence, \(\text{HA} \subseteq \text{HA}(\text{VS}) \). q.e.d.

It is easy to show that \(\text{HA}(\text{VS}) \) is also closed under direct products; so, \(\text{HA}(\text{VS}) \) is in fact a variety.

By "countable" in the following two lemmata we understand "finitely or infinitely countable" (countability is assumed in these lemmata because the language \(L \) is assumed to be countable; without this assumption about \(L \), we could prove analogous lemmata without the assumption of countability).

Lemma 6. If \(H \rightarrow S \), then for every countable \(H \) there is a \(\text{QTBEVS} \) such that \(\text{HA}(\text{QTBE}) \) is isomorphic with \(\text{HA} \).

Proof. Suppose \(H \rightarrow S \), and let \(s[Lind(S)] = \{ [s(A)] : [s(A)] \in Lind(S) \} \),

where \(Lind(S) \) is the Lindenbaum algebra of \(S \). Of course, \(Lind(S) \subseteq S \). The Heyting algebra \(s[S] = \{ [s[Lind(S)] \ldots V \rightarrow t, t \} \), where \([s(A)] \rightarrow [s(B)] \) is defined as \(\square (t[s(A)] \vee [s(B)]) \), is a subalgebra of \(\text{HA}(\text{Lind}(S)) \subseteq \text{HA}(\text{VS}) \). So, by Lemma 5, \(s[S] \subseteq \text{HA}(\text{VS}) \). On the other hand, \(s[S] \) can be shown isomorphic with \(\text{Lind}(H) \), the Lindenbaum algebra of \(H \). We can define \(f: \text{Lind}(H) \rightarrow s[S] \) by \(f([A]) = [s(A)] \).

That \(f \) is a one-one mapping is shown as follows:

\[
(f([A])) = f([B]) \iff [s(A)] = [s(B)] \]
\[
\text{iff } s(A) \iff s(B) \text{ is provable in } S \]
\[
\text{iff } t(A \rightarrow B) \text{ and } t(B \rightarrow A) \text{ are provable in } S \]
\[
\text{iff } A \rightarrow B \text{ is provable in } H, \text{since we have } H \rightarrow S \]
\[
\text{iff } [A] = [B].
\]

It follows easily that \(f \) is a homomorphism and onto. So, \(\text{Lind}(H) \subseteq \text{HA}(\text{VS}) \).

Since \(\text{Lind}(H) \) is a free Heyting algebra, there is a homomorphism from \(\text{Lind}(H) \) onto an arbitrary countable \(H \). According to Lemma 5, \(\text{HA}(\text{VS}) \).

Q.e.d.

Lemma 7. If \(H \rightarrow S \), then every countable stenciled topological Boolean algebra belongs to \(\text{VS} \).

Proof. Suppose \(H \rightarrow S \), and let \(TB \) be a countable stenciled topological Boolean algebra. Then \(\text{HA}(TB) \) is a countable Heyting algebra, and by Lemma 6, there is a \(\text{QTBEVS} \) such that \(\text{HA}(TB) \) is isomorphic with \(\text{HA}(\text{QTBE}) \). Since \(TB \) is isomorphic with \(\text{TB}(\text{HA}(TB)) \), which is isomorphic with \(\text{TB}(\text{HA}(\text{QTBE})) \), we obtain by Lemma 4 that \(TB \) is a subalgebra of \(\text{QTBE} \). Since \(\text{VS} \) is a variety, \(\text{TB} \subseteq \text{VS} \).

Q.e.d.

We are now ready to prove our generalization of the theorem of Esakia and Blok:

Theorem. Let \(S \) be normal. Then \(H \rightarrow S \) iff \(K4N \subseteq S \subseteq S4Grz \).

Proof. Suppose \(H \rightarrow S \). Then by Lemma 1, we have \(K4N \subseteq S \). If \(A \) is not a
This method of proving our theorem depends essentially upon using the particular translation \(t \) and the particular primitive vocabulary of \(L \) and \(L^\square \). To see that this is indeed the case, consider the normal modal systems from the previous section which are properly contained in \(K4N \). These systems lack either \(\Box \neg \Box \neg (A \rightarrow A) \) or \(\Box(\Box A \lor \Box B) \lor (\Box A \lor \Box B) \), and, hence, in the analogues of our quasi-topological Boolean algebras we would not have either \(I0 = 0 \) or \(I(\Box A \lor \Box B) = \Box A \lor \Box B \). As we have remarked after Lemma 4, the lack of these principles might block our proof. So, we leave open the question what form an analogue of our theorem should take with one of the translations \(t' \), \(s \) or \(s' \), or with \(\Box \) primitive, instead of \(\Box \).

Kripke-Style Models

The embedding of \(H \) in \(K4N \) and in weaker normal modal systems suggests that we may obtain a completeness proof for \(H \) with respect to Kripke-style models in which the "accessibility" relation is not a quasi-ordering, but satisfies weaker conditions.

Let us first consider modal Kripke models with respect to which \(K4N \) may be shown complete (cf. Lemmon and Scott 1977, pp.68-71). These models are of the form \(<X,R,v_o> \), where \(X \) is a nonempty set of "worlds" (we shall use \(x,y,z,\ldots ,x_1,\ldots \) as variables ranging over \(X \)), \(R \) is a binary relation over \(X \) which satisfies:

1. \(\forall x,y,z((xRy \land yRz) \rightarrow xRz) \), i.e. \(R \) is transitive,
2. \(\forall x \exists y(xRy) \), i.e. \(R \) is serial,
3. \(\forall x,y_1,y_2((xRy_1 \land xRy_2) \rightarrow \exists z(xRz \land zRy_1 \land zRy_2)) \),

and the basic valuation \(v_o \) maps the propositional variables of \(L^\square \) into \(Px \), i.e. the power set of \(X \). As usual, \(v_o \) is extended to a valuation \(v: L^\square \rightarrow Px \) by the following recursive clauses:

\[
\begin{align*}
v(A) &= v_o(A), \text{ where } A \text{ is a propositional variable,} \\
v(A \lor B) &= (x \rightarrow v(A)) \lor (x \rightarrow v(B)), \\
v(A \land B) &= v(A) \land v(B), \\
v(A \rightarrow B) &= (x \rightarrow v(A)) - v(B), \\
v(\neg A) &= \{ x: \forall y(xRy \rightarrow y \notin v(A)) \}.
\end{align*}
\]

A formula \(A \) holds in a model \(<X,R,v_o> \) iff \(v(A) = X \).

The corresponding models for \(H \), which we shall call \(H_t \) models, are of the form \(<X,R,v_o> \), where \(X \) and \(R \) are as above, and \(v_o \), which maps the propositional variables of \(L \) into \(Px \), satisfies the following condition for every propositional variable \(A \) and every \(x \in X \):

\[
x \in v_o(A) \iff \forall y(xRy \rightarrow y \in v_o(A)).
\]

In ordinary Kripke models for \(H \) this condition is usually assumed only from left to right, because the converse holds trivially when \(R \) is reflexive. But in \(H_t \) models the implication from right to left is not automatically satisfied. A basic valuation \(v_o \) is extended to a valuation \(v: L^\square \rightarrow Px \) by the following usual recursive clauses:

\[
\begin{align*}
v(A) &= v_o(A), \text{ where } A \text{ is a propositional variable,} \\
v(A \lor B) &= \{ x: \forall y(xRy \rightarrow (y \in v(A) \lor y \in v(B))) \},
\end{align*}
\]
\[v(\land B) = v(A) \land v(B), \]
\[v(\lor B) = v(A) \lor v(B), \]
\[v(\forall A) = \{ x: \forall y(xRy \Rightarrow y \notin v(A)) \}. \]

As before, \(A \) holds in an \(Ht \) model iff \(v(A) = X \).

Then we can prove by induction on the complexity of \(A \) that for every formula \(A \) of \(L \) and every \(x \in X \) the following holds:

\[(\text{Heredity}) \quad x \in v(A) \iff \forall y(xRy \Rightarrow y \in v(A)). \]

In proving Heredity, the transitivity of \(R \) is used in the cases when \(A \) is of the form \(B \land C \) and \(\forall B \), the seriality of \(R \) is used when \(A \) is of the form \(\forall B \), whereas condition (3) for \(R \) is used when \(A \) is of the form \(B \lor C \).

With the help of Heredity, we can easily verify by induction on the length of proof of \(A \) that if \(A \) is provable in \(H \), then \(A \) holds in every \(Ht \) model. The converse, i.e. completeness, follows immediately from completeness with respect to ordinary Kripke models for \(H \), and the fact that every ordinary Kripke model for \(H \) is an \(Ht \) model.

We may also expect to obtain models for \(H \) from models for our normal modal systems weaker than \(K4N \), in which \(H \) can be embedded by various translations. These models for \(H \) would roughly correspond to the modal models as \(Ht \) models correspond to models for \(K4N \). However, in these Kripke-style models for \(H \) we would have to modify in some cases the clauses for \(v \), and in some cases the Heredity condition and the definition of holding in a model. In models which correspond to translations where \(\Box \) is not omitted before disjunctions (namely, in models which correspond to \(Kt' \), \(Ks' \), \(Kt^\circ \) and \(Ks'^\circ \)), the clause for \(v(\lor B) \) would be:

\[v(\lor B) = \{ x: \forall y(xRy \Rightarrow (y \in v(A) \lor y \in v(B))) \} \]

rather than \(v(\lor B) = v(A) \lor v(B) \). In models which correspond to translations where \(\Box \) is not prefixed only to proper subformulae (namely, in models which correspond to \(Ks \), \(Ks' \), \(Ks^\circ \) and \(Ks'^\circ \)), Heredity would be replaced by the following conditional Heredity:

\[\exists z(zRx) \Rightarrow (x \in v(A) \iff \forall y(xRy \Rightarrow y \in v(A))) \]

and holding in a model would be redefined as follows: \(A \) holds in a model iff \(\forall x(\exists z(zRx) \Rightarrow x \in v(A)) \). In models which correspond to systems based on \(1 \) primitive (namely, in models which correspond to the systems with the superscript \(\circ \)), the clause for \(v(1) \) would be:

\[v(1) = \{ x: \text{not } \exists y(xRy) \} \]

rather than \(v(1) = \emptyset \). (Since these last models need not have a serial \(R \), we may have in them "blind worlds" in which \(1 \) holds. Heredity will guarantee that in these worlds every formula of \(L \) holds too; conditional Heredity will guarantee the same thing for blind worlds \(x \) such that \(\exists z(zRx) \). This resembles the modified Kripke models of Veldman (1976) with their "exploding worlds".)

So, these various weak models for \(H \) would bring in some complications. On the other hand, for \(Ht \) models the clauses for \(v \), as well as the Heredity condition and the definition of holding in a model, are exactly as for ordinary Kripke models for \(H \). The only difference is in the conditions for \(R \).

To conclude we note as a curiosity that the \(\lor \) and \(\land \), \(\lor \), \(\land \) fragments of \(H \) can be shown sound and complete with respect to models \(\langle X, R, v_0 \rangle \) for which
everything is as for \(H_t \) models save that \(R \) is only transitive. However, it would be wrong to conclude from this that these two fragments of \(H \) can be embedded by \(t \) in \(K4 \), i.e. \(K + \Box A + \Box A \).

CONCLUDING COMMENTS

We shall close this paper with some brief comments on the embeddings of the Heyting first-order predicate calculus in modal first-order predicate logics, on the embeddings of Heyting arithmetic in modal extensions of Peano arithmetic, and, finally, on the embeddings of classical logic in modal extensions of Heyting's logic.

Let \(L_1 \) be the first-order language which has individual constants and variables, predicate constants, the propositional connectives of \(L \) and the quantifiers \(\forall x \) and \(\exists x \). The language \(L_1 \Box \) has \(\Box \) in addition to that. First-order \(K \) in \(L_1 \Box \) is the classical first-order predicate calculus extended with \(\Box (A+B) + (\Box A + \Box B) \) and closed under: modus ponens, necessitation and universal generalization. A system in \(L_1 \Box \) is normal iff it includes the theorems of first-order \(K \) and is closed under its rules.

The translation \(t_1^{'} : L_1 \rightarrow L_1 \Box \) prefixes like \(t^{'} \) a \(\Box \) to every proper subformula of a formula \(A \) of \(L_1 \), whereas \(t_1 : L_1 \rightarrow L_1 \Box \) prefixes \(\Box \) to every proper subformula save conjunctions, disjunctions and subformulae with an initial existential quantifier. Then it is not difficult to prove that the minimal normal first-order system in which the Heyting first-order predicate calculus can be embedded by \(t_1^{'} \) is first-order \(K \) extended with \(\Box A \leftrightarrow \Box A \) and \(\Box \Box \forall (A+A) \) (to prove that we use, besides the disjunction property, the analogous existence property of the Heyting predicate calculus). With \(t_1 \) instead of \(t_1^{'} \) this minimal normal first-order system will be \(K4N_1 \), which is first-order \(K \) extended with \(\Box A + \Box A \), \(\Box \Box \forall (A+A) \), \(\Box (\Box A \lor \Box B) + (\Box A \lor \Box B) \) and \(\Box \exists x \Box A + \exists x A \). With \(\land \) primitive, instead of \(\Box \), we would omit \(\Box \Box \forall (A+A) \) from these minimal systems.

With translations from \(L_1 \) into \(L_1 \Box \) analogous to \(s \) and \(s^{'} \) matters are not so straightforward (as explained in Doñen 1986). It is the lack of a principle like the Barcan formula which produces difficulties in finding the minimal normal first-order systems in which the Heyting first-order predicate calculus can be embedded by these translations.

Next, let us mention that first-order Heyting arithmetic can be embedded by a translation analogous to \(t_1 \) in modal extensions of first-order Peano arithmetic, with the additional operator \(\Box \), which lie in between the \(K4N_1 \) extension of Peano arithmetic and the \(S4 \) extension of Peano arithmetic. To demonstrate that the provability of \(A \) in Heyting arithmetic implies the provability of the translation of \(A \) in \(K4N_1 \) Peano arithmetic, we proceed analogously to what we had for Lemma 1(1). That the provability of the translation of \(A \) in \(S4 \) Peano arithmetic implies the provability of \(A \) in Heyting arithmetic was shown recently (see Flagg and Friedman 1986 for an elegant proof). Similar embeddings of Heyting arithmetic in appropriate modal extensions of Peano arithmetic contained in \(S4 \) Peano arithmetic can be proved with translations analogous to other modal translations we have considered. Can we prove such an embedding for the \(S4Grz \) extension of Peano arithmetic?

Besides the modal embeddings of Heyting's logic considered in this paper there is another famous type of embedding connected with Heyting's logic. Namely, classical logic can be embedded in Heyting's logic by various forms of the double-negation translation. Underlying this type of embedding there is also a modal translation.

Classical logic can be embedded by the translation \(s^{'} \) into \(S5\)-like extensions of Heyting's logic, and in the case of propositional logic we can
easily determine the minimal normal modal extension of H (where "normal" is understood relative to H) in which we can embed the classical propositional calculus C by s'. This is the system $H5p^-$, obtained by extending H with the modal postulates of Ks' and $\Box(\BoxA\Box\BoxA)$ (see Došen 1986). To determine the maximal normal extension of H in which we can embed C by s' is a straightforward matter (we have nothing like the complications connected with $S4Grz$). This is the system $C_{\text{triv}}= C + \BoxA\BoxA$, obtained by extending H with $\Box(\BoxA\Box\BoxA)$ and $\BoxA\BoxA$. This maximality of C_{triv} is proved like the fact that all consistent normal extensions of $H + \Box\Box(A\BoxA)$ are included in C_{triv} (see Došen 1985, Lemma 1). The system C_{triv} is a conservative extension of C in L, but not of H in L. Can we find a maximal system (not necessarily unique) among the normal extensions of H in which C can be embedded by s', which are conservative extensions of H in L?

One such maximal conservative normal extension of H is the system $H_{dn}= H + \BoxA\Box\BoxA$. The embedding of C in H_{dn} by s' amounts to the simplest double-negation translation, where double negation is prefixed to every subformula. The translation s' is uneconomical for embedding C in H_{dn}: if \Box in $s'(A)$ is omitted in front of $+, A$ and \Box, we obtain a formula equivalent in H_{dn}. But the economy brought up by the translations t, t' and s is not now available. Of course, for embedding C in C_{triv} the economy can be total: all necessity operators are superfluous.

However, not all normal extensions of H, conservative with respect to H in L, in which we can embed C by s', are included in H_{dn}. One such extension which is not included in H_{dn} is obtained by adding $\BoxA\BoxA$ to $H5p^-$. (That this system is conservative with respect to H in L may be proved with the help of models investigated in Ono 1977, Sotirov 1984, Došen 1985 and 1986a.) The economy brought up by the translations t, t' and s is now available, as well as a more thorough economy which omits every \Box except those prefixed to propositional variables.

The general form of the embeddings considered here is the following. We have two nonmodal systems S' and S'' such that S' is a proper subsystem of S'', and we are able to show that:

(i) S' can be embedded by a modal translation in S'' plus some modal postulates,

and vice versa:

(ii) S'' can be embedded by a modal translation in S' plus some modal postulates.

Embeddings of H in modal systems with the nonmodal base C are of type (i), whereas embeddings of C in modal systems with the nonmodal base H are of type (ii). (The embeddings of classical and Heyting's logic into "linear logic" envisaged by Girard (1987) are like embeddings of type (ii).) For both types, one direction of our embeddings, that one which from the provability of A in the nonmodal system infers the provability of the translation of A in the modal system, is usually proved by a straightforward induction on the length of proof. The other direction is in principle more difficult to prove for type (i), because for type (ii) we usually have the following simple procedure. Our modal extension of S' must contain among other modal postulates the modal translations of theorems of S' missing from S'. To show that the provability of the modal translation of A in this extension of S' implies the provability of A in S'', we use the fact that our modal extension of S' is included in S'' plus $\BoxA\BoxA$, and that this last system is a conservative extension of S''. This simple procedure is not available for embeddings of type (i).
REFERENCES

Esakia, L.L., 1979, On the variety of Grzegorczyk algebras (in Russian), in: "Issledovaniya po neklassicheskim logikam i teorii mnozhestv", Nauka, Moscow, 257-287 (Math. Rev. 81j:03097; according to references in this paper, the results presented were announced in 1974).

